

Tetrahedron Letters, Vol. 35, No. 27, pp. 4853-4856, 1994 Elsevier Science Ltd Printed in Great Britain 0040-4039/94 \$7.00+0.00

0040-4039(94)00894-9

A Novel Method for the Synthesis of α -Fluoroketones via Claisen Rearrangement

Vichai Reutrakul*, Thongchai Kruahong and Manat Pohmakotr

Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand.

Abstract: Fluorine-facilitated Claisen rearangement has been employed as a key step in the synthesis of α -fluoroketones 5. The elimination of sulfenic acid from the allyl ethers 3 are effected under FVP conditions.

In the preceeding communication,¹ we have reported the synthesis of fluoromethylketones by flash vacuum pyrolysis (FVP) utilizing α -fluoromethyl phenyl sulfoxide 1 as a fluorinated one-carbon building block. The present letter deals with the novel synthesis of α -fluoroketones employing fluorinefacilitated Claisen rearrangement as the key step $(3 \rightarrow 5)$.^{2,3,4} The process is summarized in Scheme 1.⁵

Scheme 1

The adducts 2 were prepared in high yields ($R = C_8H_{17}$, 82%; Ph, 83%; PhCH₂, 91%) using techniques reported earlier.¹ The allyl ethers 3 were prepared by the alkylation with the allyl bromides or iodides in good yields, using LDA as a base. The Claisen intermediate 4 was generated by FVP technique with the following conditions: reaction flask temperature, 216 °C and column temperature 305 °C at 0.1 mmHg. The results are summarized in Table 1.

Allyl ethers 3, %	α -Fluoroketones 5, % ^a
$\mathbf{R} = \mathbf{C_8}\mathbf{H_{17}}$	
a) Br, 98	83
b)I , 75	93
c) I, 83	97
d) Br , 72	28 + C ₈ H ₁₇ COCH ₂ F 6, 71
c) Ph Br , 98	50
R = Ph	
a) Br. 75	83
b) I, 64	82
c) I, 51	84 + PhCOCH ₂ F 7, 45
d) Br , $_{63}$	54
e) Ph Br , 66	98
$R = PhCH_2$	
a) Br, 76	85
b)I, 64	94
c) I. 84	98
d) Br , 79	32 + PhCH ₂ COCH ₂ F
e) Ph Br , 87	8 , 55 65

Table 1 Yields of Allyl Ethers 3 and α -Fluoroketones 5.

^a Products were isolated by PLC using hexane as an eluent.

The α -fluoroketones 5 are obtained in high yields except in the cases of 3d ($R = C_8 H_{17}$, Ph, PhCH₂; $R_1 = R_2 = Me$, $R_3 = H$) in which the corresponding fluoromethylketones are also isolated. The formation of the fluoroketones 6, 7 and 8 could be rationalized on the basis of the steric crowding of the transition state 4 causing it to fragments instead of forming a new carbon-carbon bond.

The reaction sequence in Scheme 1 has also been applied to a more sterically hindered aldehyde; pivalaldehyde. The fluoroketone 11 was isolated in moderate yield. The intermediates 9 and 10 were synthesized in high yields (Scheme 2).

Scheme 2

Our approach appears to be general for the synthesis of this type of fluoroketones. The outstanding features are the ease of the syntheses of intermediates 2 and 3 in high yields, and the final product fluoroketones can be readily purified by preparative thin-layer chromatography (PLC, silica gel).

References and Notes

- 1. Submitted for publication. Also see this communication for leading references on the chemistry and biology of fluorinated compounds.
- For reviews on Claisen rearrangement see: a) Hill, R. K. in Aymmetric Synthesis Volume 3, Morrison, J. D., Ed. Academic Press, N. Y. 1984, Chapter 8. b) Ziegler, F. E. Chem. Rev. 1988, 88, 1423. c) Blechert, S. Synthesis 1989, 71.
- An example of *in situ* generation of Claisen system (1,5-heterohexadiene) by the elimination of sulfenic acid has been reported: a) Mandai, T.; Ueda, M.; Hasegawa, S. I.: Kawada, M. and Tsuji, J. *Tetrahedron Lett.* 1990, 31, 4041. For related reactions see: b) Buechi, G. and Vogel, D. E. J. Org. Chem. 1983, 48, 5406. c) Paterson, I.; Huhne, A. N. and Wallace, D. J. *Tetrahedron Lett.* 1991, 32, 7601. d) Ireland, R. E.; Wipf, P.; Armstrong III, J. D. J. Org.

Chem. 1991, 56, 650. e) Panek, S. J. and Clark, T. D. *ibid.* 1992, 57, 4323. f) Kolb, M.; Gerhart, F.; Francais, J. P. Synthesis 1988, 469. g) Camps, F.; Messeguer, A. and Sanchez, F. J. Tetrahedron 1988, 44, 5161. h) Greuter, H.; Lang, R. W. and Romann, A. J. Tetrahedron Lett. 1988, 29, 3291. i) Shimizu, I. and Ishii, H. Chem. Lett. 1989, 577. j) Shimizu, I.; Ishii, H. and Tasaka, A. *ibid.* 1989, 1127. k) Yamazaki, T.; Welch, J. T.; Plumer, J. S. and Gimi, R. H. Tetrahedron Lett. 1991, 34, 4267 and references cited.

- A number of publications on fluorine-facilitated Claisen rearrangements has appeared. a) Normant, J. F.; Reboul, O.; Sauvetre, R.; Deshayes, H.; Masure, D. and Villieras, J. Bull. Soc. Chim. Fr. 1974, 2072. b). Nakai, T.; Tanaka, K. Ogasawara, K. and Ishikawa, N. Chem. Lett. 1981, 1289. c) Taguchi, T.; Morikawa, T.; Kitagawa, O.; Mishima, T. and Kobayashi, Y. Chem. Pharm. Bull. 1985, 33, 5137. d) Metcalf, B. M.; Jarvi, E. t. and Burkhart, J. P. Tetrahedron Lett. 1985, 24, 2861. e) Yuan, W.; Berman, R. J.; Gelb, M. H. J. Am. Chem. Soc. 1987, 109, 8071. f) Welch, J. T.; Plummer, J. S. and Chou, T. S. J. Org. Chem. 1991, 56, 353. g) Araki, K. and Welch, J. T. Tetrahedron, Lett. 1993, 32, 2251.
- 5. All new compounds were characterized by their spectral data and elemental analysis or HRMS molecular weight determination.

(Received in UK 7 April 1994; accepted 6 May 1994)